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Abstract

This chapter has brought statistics and neural networks together to provide a better understanding of the
generalization ability of neural networks. Statistical approaches are used to analyze the fimction of the neu-
ral networks. It also gives a better understanding of the factors contributing to the generalization of the neu-
ral networks. Data used in training plays an important role for a successful application of neural networks in
intelligent data analysis. The impact of the available data is investigated in the chapter. In most cases, data
preprocessing and post processing are required to ensure that the neural networks is successful in perform-
ing intelligent data analysis. This has also contributed to the impact of the generalization ability of the neu-
ral networks.

22.1 INTRODUCTION

The study of generalization ability of the neural network is among the most important areas of current re-
search. Among most popular neural network configuration, the Multilayer Neural Network (MLNN) with
back propagation error learning [7] is the most discussed and studied. In order for MLLNN to be useful in
real world applications, several factors relating to the generalization ability need to be taken into account,
There are the number of hidden nodes related to the number of weights in the network, amount of noise in
the training set and the distribution of the training set. They will be discussed in more detail in Section 22.3
of this chapter. Most of the research works in determining the best generalization ability of the MLNN have
placed their focus on estimating the complexity of the network [10] and network size [8]. There are also a
few effective approaches that are used to avoid under fitting and over fitting of the MLNN. The more com-
mon approaches are the weight decay [2], early stopping [19] and utilizing of hint [20].

In the past decade, the relationship and overlapping between the field of neural networks and statistical
methods have been explored [3, 4]. However, statistical methods are mainly concerned with data analysis,
therefore some neural networks that are intended to model biological systems have little connection with it.
Those with relationship are feed forward MLNN that is similar to the projection pursuit regression, Hebbian
neural network that is simular to principal component analysis, and Kohonen net to k-means cluster analy-
sis. Those without relationship are Kohonen Self-organizing Map (SOM) and Reinforcement leaming net.
Although there is some crossover between the two fields, each has their own objective in performing indi-
vidual research. Neural network researchers are trying to design something that act like a human being that
has the ability to adapt and learn by itself. It is treated mostly like a black box that requires no human inter-
vention, and is used to provide data in and prediction out phenomenon. Anybody without any experience
should be able to use them with confidence using automatic leaming. On the other hand, statisticians usu-
ally depend on human understanding of the problem under study before designing any estimation model.
They then generate hypotheses, test assumptions, and many other parameters to help them understand the
built model. From their different objective, it will be fruitful if both of thern can be used hand in hand. As
statistician has done much study in the field of data analysis over the past few decades, the basic and analy-
sis technique is already well established. It will be very useful to make use of the statistical analysis tech-
nique to help in designing a better neural network system. As neural network is trying to model the way a
human learns and how the brain functions, the notions of learning, self-organizing, dynamics and field the-
ory may provide statisticians with some inspiration for future studies.

The purpose of the chapter is to perform a statistical analysis on the important issues of MLNN’s gener-
alization ability, and to provide solutions to them. In Section 22.2, the statistical aspect of the MLNN will
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be studied and analyzed. In Section 223, the analysis result is then used to realize some of the potential
factors that have direct effect on the generalization ability of the MLNN. In Section 22.4, investigation of
the statistical frameworks used to understand the behavior of MLNN is extended to other soft computing
techniques. After all these analysis, they are then used as a basis in determining approaches to find solutions
to the factors that contribute to the best generalization ability. The two approaches that have been discussed
in this chapter are the SOM data splitting technique and the distribution modifter technique. Their experi-
mental simulations and results will also be reported.

222 STATISTICAL ANALYSIS OF NEURAL NETWORKS

In performing function approxmmation, the MENN is similar and comparable to non-parametric estimators
[14]. The purpose is to build a model to find the relationship between the input vector (independent vector)
x and the target vector (dependent vector) y without any assumed prior parameters. Given that the input
vectors X and the target vectors ¥, the expression that uses to describe the relationship can be:

Y =g(X) ()

When obtaining the training set {observations), there will be some environmental factors that will affect
the measurements. Therefore it is not possible to have an exact function of g(X) that describes the relation-
ship between X and Y. However, a probabilistic relationship govern by joint probability law v can be used to
describe the relative frequency of occurrence of vector pair %, y) for # training set. The joint probability
law v can further separate into environmental probability law g and conditional probability law . For nota-
tion expression, the probability law can be expressed as:

Py = P)P(y) - @)

For environmental probability law g, it describes the occurence of x. As for conditional probability law
7, it describes the occurrence of y given x. A vector pair (x, y) s considered as noise if x does not follow the

environmental probability law z, or the y given x does not follow the conditional probability law .

From Eq. 1, the relationship g(X) based on the available training set can be assume to has direct relation
with the conditional probability law y. Therefore, it is the role of y that the MLNN is trying to find. It can
also be denoted as E(Y]X) as the expectation of ¥ given X. Therefore:

g(X)=E(Y|X) (3)

In MLNN, g¢X) is not always obtained straight away from the training set (X, ¥). It has to undergo cer-
tain training (estimation) process in realizing the best g(X). As MLNN, the best gfX} medel is directly re-
lated to the internal weights 77, it can then be expressed as:

g(X) = f(X. W) 4
where J¥* denotes to the best weights from the above condition, the Eq. 1 is therefore:
Y=f(X,W)+8 (5)
where &denotes the error function; the output vectors (predicted value) O will be:

O=f{X,W) (6)

To find the best weights ¥* so as to minimize the error function g MLNN make use of the error back
propagation fearning algorithm 1] to perform the mean square errors (MSEs) minimization process,

n

Z[Y - X, O i[Y" or - As the prediction performance of the MLNN is very much dependsnt
i=1 i=l

on the weights 7, the expected performance functions A(w,) could be expressed as:
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A(w)

= E([Y - OT)

=E([Y-E(Y | X)+EY| X)+0P)

=E([Y -E(Y [ X))+ E(EX | X)-0F) + 2E([Y - E(Y | IEY | X) - 0]
=E([Y - EY | X))+ EJEY| X)-0]*)

As MSE combines the bias and variance into one measure [9, 14]. The above expression can then be
separated into bias and variance term using the relationship of MSE = bias” + variance:

BIAS = E(¥ | X)~O=EX | X)- f(X, W) (7)
VARIANCE = E([Y - E(Y | X)) (8)

22.3 ANALYSIS OF THE GENERALIZATION OF NEURAL NETWORKS

The generalization ability of the MLNN is the most impertant feature in most practical application. As the
realization of the best-fit model is dependent on the available training data, it is also regard as a measure on
how good the MLNN can provide reasonable prediction from ‘unseen’ input data rather than the training
data set. The MLNN using back propagation learning depends on MSE to adjust their weighis # in mini-
mizing the prediction error function 6, it is important to keep the MSE small. From Eqs 7 and 8, bias and
variance is directly affecting the value of MSE, It is then important to keep these two components small as
well. However, it is difficult to keep them small at the same time.

From Eq. 7, the bias is also dependent on the weights ¥, therefore the size of the network plays an im-
portant role in enabling the generalization ability of the MLNN. A small network with only one hidden
node will most likely be biased, as the available fumction X, ) has limited span to adjust its weights [14].
In neural network term, it is considered under fitting. [15] and [5] have shown that a large amount of hidden
nodes can make the learning fast with better training and generalization errors. [15] has also shown that
with large number of hidden nodes, it is more likely to have no local minima. From these analysis, it is real-
ized that with large hidden nodes, the bias can be reduced, thus improved the model ffX, W#). Beside the
weights relating to bias, the number of training vectors (X, ¥} will also contribute to the amount of bias. In
order to mimimize the bias of the model, more available training vectors (X, ¥} should be used. Usually, for
most applications where training data is difficult and expensive to obtain, this has little significant in reduc-
ing the bias.

It seems that by reducing the bias, the MSE can be reduced, but this will normatly increase the variance.
Therefore, there is a need to keep a balance between the variance and bias. The contribution of the variance
is largely dependent on the noise involved and the distribution of the training set. For the case of the noisy
data, MLNN tries to reduce the MSE with small amount of bias using large number of hidden nodes. There
is the danger that the variance will increase tremendously due to noisy training vectors. In effect, the final
MLNN prediction model will not have good generalization ability due to the high variance. This is the phe-
nomenon of over fitting known in neural network. In order to balance the contribution of the bias and vari-
ance in the final model, automatic smoothing techaique can be applied [14]. The more common smeothing
techiiques used are cross-validation [13] and early stopping validation [19].

Smoothing technique is able to provide better control between bias and variance when the training set is
noisy. But the distribution of the training data will generate another problem. Under the case where the
‘clean’ data is not evenly distributed, the probability law v will be biased towards the majorities (Iarge sta-
tistical frequency). As for the minorities (small statistical frequency), they will be smooth up by the auto-
matic smoothing technigue just like noise. Figure | shows the graphical example of a nen-evenly distrib-
uted ‘clean’ data set, and the expected function has been smoothed up. This is valid as from Eq. 2, condi-
tional probability law y will affect to some extent on the {inal prediction medel /7 W*). In effect, this will
increase the bias again. Under this circumstance, a technique needs to be introduced, such that the distribu-
tion of the ‘clean’ data can be evened up, and the MLNN will be able to accommodate the minority charac-
teristic function.

In this section, the generalization ability of the MLINN can be concluded as being largely dependent on
the following factors:

a) number of hidden nodes or size of the weights
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b) amount of noise in the training set

Fig. 1. Uneven Distribution of Training Data

¢) distribution of the ‘clean’ training data in the training set.

A few points need to be noted from this analysis. First, a large number of hidden nodes or adjustable
weights is favorable and can reduce bias. Secondly, the balancing of the bias and variance could be
achieved by using some automatic smoothing techniques like cross-validation or early stopping validation.
Thirdly, a iechnique should be introduced to ensure the distribution of the *clean’ data is not smooth up by
the autornatic smoothing technique. These will be examined in Section 22.6.

22.4 STATISTICAL FRAMEWORKS FOR OTHER SOFT COMPUTING
TECHNIQUES

Although the statistical analysis presented in Section 22.2 is based on MLNNs, the basic formula can still
be used for other soft computing techniques such as fuzzy inference systems and newral-fuzzy approaches.
Regardless of which soft computing techniques are used, the main purpose is to build a data analysis
model that can be used when inferential prediction is required. The three main components in Eq, 1; inputs
(independent vectors), X; the target (dependent vectors), ¥; and the transfer function, g; still exist. This
could also lead to Eq. 3, as most soft computing data analysis techniques try to infer output from a set of
input variables, However, depending on the soft computing techniques used, Eq. 4 has to be re-written as:

g(X)= f(X, P%) ' ©)

where P* denotes the set of parameters giving the best estimation, and /is the estimating function of the
network.

In most neural network techniques, the P* can be replaced by the interconnected weight vector W* as
shown in Eq. 4. This is the set of paranieters that the learning process is trying to tune as shown in the pre-
vious section. In most fuzzy mle extraction techniques, the P* can be replaced by the set of membership
functions. The tuning of the membership functions is carried out in searching for the best estimation results.
This is especially important in any case of data analysis problem as the fuzzy inference system makes use of
fuzzy rules and membership functions to define the fuzzy patches in the input-output state space. As for
most neural-fuzzy, neural-fuzzy-genetic, and genetic-fuzzy approaches, the main purpose is to search for
the set of membership functions and defuzzification parameters to produce the best estimation results. In
this case, the P* has to be replaced by the joint parameters of the membership functions and defuzzification
parameters. Of course, this basic formula shown in Eq. 9 can also be extended to other soft computing tech-
niques that are not mentioned here.

For Eq. 9, by taking the error functicn inte account, i can be re-wriiten as:

Y = f(X,P*)+8 {0

where & denotes the error.
The predicted output, O will then be:
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O=f(X,P) an

In most learning or tuning algorithms used in soft computing, the MSEs minimization process,

2": [¥— f(X, Py 0r f[yu OF is normally used as a basis to search for the best set of parameters, P* Itis
i=] i=1
therefore suggested that the bias and variance phenomenon shown in Eqs 7 and 8 respectively are present in
meost soft computing techniques.

From these analyses, the following deductions for data analysis model using soft computing techniques

can be made:-

a) the quality of the data analysis is directly proportional to the success of constructing the soft com-
puting data analysis model;

b) the distribution of the available training data will decide on what the model will generalize eventu-
ally; and

c) the amount and quality of available training data used in building the model has direct effect on the
accuracy of the data analysis model.

225 IMPACT OF AVAILABLE TRAINING DATA

In the previous two sections, it can be observed that the success of building a neural networks or soft com-
puting data analysts model depends very much on the available training data. It is worthwhile to look at the
problems that may exist in the data for most data analysis problems. These problems can basically be classi-
fied as too much available data, too little available data and fractured data [1].

22.5.1 Too Much Available Data

Depending on the application domains, we may find in some cases that there are too much available data.
One may argue that more data is better in building the neural networks data analysis model. However, if
there are noise and error among the data, they may effectively increase the error function in the data analy-
sis model. This could also increase the search space, which directly increases the search time as well. One
main reason of the increase of the error function can be due to the presence of noise and corrupted data in
the available training data. Although most ressarchers have claimed that ANNs are good for rejecting noise,
if the validation process is not handled properly, it may present the adverse outcomes. From Section 22.3
and 22.4, it is also observed that it disregards whichever soft computing techniques being used; the distribu-
tion of the noise may have direct effect on the accuracy of the model.

In some cases, the amount of input vectors (independent vectors, X) could be very large. If we are going
to use all the available input variables in building the data analysis model, the transfer function could be a
very complex model. Besides, any unrelated input variables may have a negative effect on the accuracy of
the data analysis model. Therefore there is a need to make use of some input contribution measure to select
relevant input variables for the problems under investigation [0, 17]. In cases where the number of the
available data is very large, it is always safer to assume that the underlying function to be realized is very
complicated. In this case, some kind of clustering before the actual analysis may help in achieving a better
analysis model. As the search space has been reduced by the clustering technique, the data analysis model -
can be realized easier and faster.

22.5.2 Too Little Available Data

In some application domains, obtaining training data is an expensive and difficult process. Therefore, in
some cases the amount of the available data may be minimum or insufficient. The data analysis model nor-
mally can still be derived from these data if the distribution of the important features in the data is abvious.
However, in cases where the features are not well distributed, it may be difficult for any learning algorithm
to estimate the best function. As shown in Eq. 2, most learning algorithms perform the role of estimating
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P(y), so that the final prediction model, ¥ = f{X, P*)+4, can be used to estimate the majorily of the data
and reject the minorities as noise or outliers.

Most smoothing or validation technigues involve the splitting of the available data into training and test-
ing sets. If the amount of available data is small, some of the features may only appear in the validation set,
and this will not give a good indication of the underlying function. However, in cases where the distribution
is not evenly distributed or some minority features are important, it is difficult for the learning algorithm to
incorporate them. These two issues will be examined and presented in the later sections of this chapter.

22.5.3 Fractured Duaia

In some cases, the preprocessing of the available data performed by any human expert or preprocessing
technique is a very important factor in contributing to this class of problem. The process of preprocessing
the available training data have to be handled carefully, as any data incompatibility between the data in the
application domain will directly have a great effect on the final data analysis model. In order to ensure that
the data are compatible in the problem dormain, preprocessing using some kind of normalization is usually
performed.

22.6 IMPROVING GENERALISATION ABILITY OF MLNN

In ensuring the generalization of MLNN, cross-validation techniques and early stopping validation tech-
niques are commonly used as the smoothing technigues. Although cross-validation and early-splitting vali-
dation are considered two different types of automatic smoothing techniques, they do have their similarities.
Both of them divide the whole sample of the available data set into training and validation sets. The differ-
ence is the way they perform smoothing in training of the MLNN. In cross-validation technique, the avail-
able data set i3 usually divided into & subsets of equal size. A k number of MLNN is set up, each time leav-
ing out one of the subsets from the training. The validation error is then calculated only based on the omit-
ted subset. This is sometime known as ‘leave-one-out’ cross-validation. However, the main disadvantage of
this automatic smoothing technique is the training time needed to train & networks. As for early stopping
validation, it works on the basis of split-sample methods. This only requires one network to be trained. The
advantages include that only one major decision to be made by the user and it is fast as compare to the
*leave-one-out’ cross-validation technique.

When applying early stopping validation, the available data set is first split into training and validation
sets. A very large number of hidden nodes are used to set up the MLNN. This is favorable to our discussion
in the previous section by reducing bias. By using a small learning rate, the validation error (which is also
MSE} is calculated periodically. The training process is stopped when the validation error starts to rise. In
this case, the validation is just like a teacher guiding a student. It is therefore plays a very important part in
obtaining the best generalization ability of the MLNN.

Just like the error function used in training the MLNN, the validation process also contributed by the
bias/variance dilemma. Beside this, the splitting of the training and validation set is the major contribution
of the final generalization ability of the MLNN. [11] has realized that the validation error will oscillate up
and down several times during the process of training. [11] has then proposed that training should let the
MLNN converge, and then observed where the smallest validation error is.

Until now, all the factors that directly affect the generalization ability of the MLNN have been identi-
fied. The automatic smoothing techniques have alse been examined. It can be concluded that to reduce the
bias of the MSE term, large number hidden nedes is more practical (to prevent under fitting). An automatic
smoothing fechnique is needed to ensure that the variance is kept small as well (to prevent over fitting).
Early stopping validation is more preferable as it is fast and used in the situation where the number of hid-
den nodes is large. To find the lowest validation error, the training process is allow to converge, and the
weights at the lowest validation error is used as the best weights W*. However, there are still problems that
need to be solved:

a}) How to split the training and validation set?
b) How to modify the distribution of the *¢lean’ data?

The following two sub-sections will provide answers to these two problems.
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Fig. 2. Typical plot of training and validation error

22.6.1 Self-organizing Map Data Splitting Approach

When using early-stopping validation, split-sample validation is commonly used for estimating the gener-
alization capability of a MENN [16]. In this approach, a set of validation data that is not used in the training
process is used to calculate the validation error. The validation error is found in the same way as the aver-
age training system error of the MLNN:

_ 2
y, == Gl (12)
¢ 2P

where V.= average validation error; P=no. of pattems; T, = target pattems; and O,= output patterns.

The stopping point in this method is suggested to be the point when the validation error starts to rise.
This point also indicates that the generalization ability starts to degrade. Figure 2 shows a typical graphical
plot of the training system error and the validation error. When training starts, the errors for both data sets
will normally reduce. After many training iterations, the validation error normally starts to rise although the
training error may continue to fall. In most early stopping validation technique, the MLNN training process
can be stopped at this point, as further training will result in over fitting. As mentioned in the previous sec-
tion, [11] has pointed up that the validation error may oscillate up and down several times during the proc-
ess of trajning. Therefore, training should let the MLINN converge, and observe where the smallest valida-
tion error is. Although this appears to oppose the characteristics of the early-stopping validation technique,
this feature is desirable. Therefore, in this case the best generalization point is where the validation error is
the smallest.

Using the above approach, the generalization ability of the MLNN is highly dependent on the set of
validation data. Hence, the splitting method used is important. However, there are no rules to suggest the
best splitting methods. Nevertheless, the validation data set should demonstrate two characteristics:

a) the validation set should be statistically close to the training set, and
b} the validation error should indicate the generalization ability of the final MLNN.

When using the above validation technique, for applications with sufficient data, they can be divided into
three sets; training, validation and testing. The training and validation sets are used in the training process
and the testing set is then used to determine the generalization error of the trained network. The main prob-
lem: in this case is how to perform the data splitting.

If Uis the universal sample space of all the cases of data to be processed by the network, then the train-
ing set 7R should be statistically equal to U:-

s(TR) = s(U) (13)
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where s¢) indicates the statistical characteristics of 2 data set.
If s{TR) covers the complete sample space, validation set, V4 and testing set, TZ should be statistically

similar to the training set, that is,

s(Vd) ¢ s(U) (14)
S(TE) < s(U) (15)

and with the condition: VANTE = .
However, if the conventional random approach of data splitting is used, this may result in the worst-case
situation as illustrated by the following equations.

s(TR) . s(U) (16)
s(Vd) o s(U) (17
S(TE) < s(U) (1s)

with conditions: TRNVANTE =&, and s(TR) # s(VA) # s(TE) =&

In this case, the statistical characteristics of the three data sets are all mutnally exclusive, The training
set does not cover all the sample space, and the validation and testing sets will not be able to give a fair in-
dication of the generalization ability of the network.

In SOM [18] data-splitting, the available data are first classified into different clusters using unsuper-
vised leamming. If U is classified into C, to C, clusters, then U/ can be written as:

U=1{¢,C,,Cy.C, ) (19)

If the training data set is selected from each one of the # clusters and the rest are left for testing and
validation, then the conditions on Eqs 14 and 15 are satisfied. In this case, the training set will cover all the
desired undertying cases. The validation set and testing set are subsets from the clusters from which the
training set is selected. The case studies and results related to this proposed method is presented in Section
22.7.1.

22.6.2 Distribution Modifier of MLNN

As has been shown in Section 22.2, in order to balance between bias and variance in estimating the data
analysis model, it is important to make use of some validation or smoothing techniques. At the same time,
the previous sub-section also suggested that the splitting of the available data is a very important process in
ensuring that the data analysis model can cover most of the features in the underlying function. This is not
normally possible, especially when all the features of the underlying function are not distributed evenly.
One possible solntion to this problem is to go back to the field or experiment and extract more training data
that could present that specific feature in the underlying function. However, this is not feasible as the cost
and effort involved is normally huge and difficult for most problems. The other solution is to modify the
distribution of the available training data such that most features in the underlying function will be obvious
for any learning algorithm to identify them. The objective here is therefore, with the use of any validation
techniques, that it is important while performing the balancing of bias and vanance, most features in the
underlying function should be included in the data analysis model.

Before this can be done, an analysis into the normal error minimization process is required. Effectively,
the learning algorithm is searching for the function that best describes most of the available data. For those
data that are significantly small in the overall distribution, they will be treated as noise in the smoothing
process. This characteristic is geod to reject noise. But at the same time, any important features that are
presented in this small amount of data as compared to the overall distribution will also be excluded from the
validation process.

The problem now is with the splitting of the available data. It is hard to tell where the small number of
trnportant features will appear. In the previous sub-section, we have proposed a systematic splitting tech-
nique using SOM. In this methed, most minorities will only be present in the training set, as the idea is to
make the validation set explicitly a subset of the training set, We make use of this SOM splitting method to
help us in splitting the available data into training and validation sets for use to train the MLNN. Afier the
data has been split into the two sets, the distribution modifier using MLNNs are as follows:
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1. Train & MLNN with the split sample validation technigue using the training and validation set based on 80OM data
spliEting.

2. Atthe end of the training, generate a distance measure between the target output and the actual output for each
fraining point:

dm=ly—o|

where yis the target output and o is the actual output from the MLNN.

Generate a report with all the input and cutput vectors with high distance measures.

The human analyst will need to examine the repoert. If any of the training patterns presented in the report seem to

be important, those will be the points that need to be reinforced in the distribution modification stage.

After the points have been identified that need to be reinforced, distance measure observation poinis are set to

monitor them when the MLNN is undergoing training.

Start {o reinforce those points by duplicating them to double the original number in the training set.

As we know that the validation set is important in providing generalizaticn indications, the points that are rein-

forced in the training set should also appear in the same number in the validation set.

Start training the MLNN with the new training and validation sets with split-sample validation.

Perform distance measure dn? on those reinforced points.

0. Perform total error measure based on the sum of square error on the training set error and the validation set er-
ror:

TotE =ATE? +VE*

where TE = training set error and VE = validation set errar

11. Normally, the distance measure on those points and the total error, ToiE should bath present better results be-
fore those points have been reinforced. If the total error is worse than before, the number of the duplication points
in steps 6 and 7 needs to be reduced.

12. The process from steps 6 to slep 11 can be repeated until the distance measures are below a certain threshold
set by the human analyst.

Se® No o AL

The case studies and results related to this proposed method is presented in Section 22.7.

227 CASE STUDIES AND DISCUSSIONS

The case results for the SOM data splitting validation technique presented in Section 22.6.1, and the distri-
bution modifier presented in Section 22.6.2 are nvestigated and discussed in the following two sub-
sections,

22.7.1 Case Studies for SOM Data Splitting

One of the problems for the determination of petrophysical properties from well-log data is used to illustrate
the application of SOM data-splitting approach used to estimate the generalization ability of a MLNN. The
performance of networks using different numbers of hidden nodes is also investigated. In petroleum explo-
ration, the prediction of petrophysical properties [12] from well log data is usually a complex problem.
Measurements from several log instruments are first obtained from the site. Samples from various depths
are extracted for examination; followed by extensive laboratory analysis to determine the petrophysical
properties of the corresponding depth. Data obtained from these measurements and their corresponding
analyses are known as core data. Based on information from a number of wells, decisions on important
issues such as viability of production: can be addressed. Traditionally, statistical and graphical methods are
used to establish models to relate the well-log data to petrophysical properties of the well, With vast amount
of data from increasing number of logs, altemative methods are sought to solve the problem. The MLNN
has been used widely in this problem, The MLNN-based data analysis models are trained using core data.
They are then used to predict the petrophysical properties of other depths or other wells within the region.

In this study, a set of typical well-log data is used and the number of available core data is 303. This set
of data consists of 9 input logs (PEF, RHOB, NPHI, CALIL RT, RXQ, GR, DT and SP). Typical petro-
physical properties to be determined are porosity, permeability, volume of clay (VCL) and a number of
other parameters. In this study, results of VCL are examined.

The available 303 core data are first classified using the unsupervised SOM method, Testing and valida-
tion data sets are then selected from each cluster. If a cluster contains only one data point, it is selected as
the training data. This is to ensure that the training of MINN covers all possible features. Table 1 shows the
number of data in each set from the SOM data-splitting approach.
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Table 1. Number of training, validation and testing data

Set No. of data
Training 117
Validation 77
Testing 105

Table 2. Number of hidden units in each experiment

Experiment No. of hidden units
1 3
2 5
3 18
4 52
5 82

Table 3. Training and Validation Error

Experiment Training Validation
Error error
1 0.00269 0.00404
2 0.00198 0.00557
3 0.00200 0.00548
4 0.00213 0.00340
3 0.00191 0.00362

Table 4, Comparison of Errors for different MLNNs

Experiment No. of Error from | Error from
Hidden units | Data Set, P | Data Set, T

1 3 0.00345 0.00591

2 5 0.00362 0.00579

3 18 (.00359 0.00571

4 52 0.00275 0.00431

5 82 0.00262 0.00392

313

A comparison study on the performance of the MLNN due to different number of hidden units has also
been carried out. It is intended to verify whether reduction of training and generalization errors can be ac-
complished by using targe amount of hidden units as mentioned by Lawrence et al [15]. The number of
hidden units varied from very smail to & times the number of training cases. Table 2 shows several experi-
ments and the corresponding number of hidden units being used.

The MLNN is trained using the training data set, and the validation error is calculated for every cycle of
the training process. As the training and validation errors may go up and down a few times during training,
the process is run uvatil the network converges and the validation error rises steadily indicating the network
is over fitted. At such point, training is stopped and the network configuration with the lowest validation
error is used. After the training and validation processes have been completed, the testing data set is then
used {o indicale an unbiased estimation on the MLNN generalization ability.

The MLNNs from Experiment 1 to Experiment 5 in Table 2 have been trained and stopped at the lowest
validation error point. The formula in Eq. 22 is used to calculate the errors presented in this section. Table 3
shows the training and validation errors of five networks.

In order to assess the generalization ability, the training and the validation data set are combined to form
Data Set, P, which was used previously during the training process. The Testing Data Set, 7, is one that has
not been applied to the network. Results from these two data sets are used to compare the performance of
the networks. The resulis are tabulated in Table 4.
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from Experiment 5

From these results, errors due to Data Set P in Table 4 are dependent on both training and validation er-
rors in Table 3. The value is approximately the average of the two previous errors. In Experiment 2, al-
though the training error was the lowest, but it has high validation error. The overall error became the high-
est as compared to other experiment cases. This shows that the validation error has large effect in defermin-
ing the overall error. It also suggests that by using the training or validation error alone is not a good esti-
mation of the generalization ability of the ML.NN. The use of an unbiased testing set such as Data Set 7,
which is not nsed previously in the training process, should be used to estimate the generalization ability.
From Table 4, it is observed that the overall error decreases as the number of hidden units increases, Fx-
periment 5 with the largest number of hidden units gives the lowest errors from both data sets F and 7. Re-
sults from other experiments using much higher number of hidden units reduce the errors insignificantly,
but they require excessive long training time. This suggests that when the number of hidden uniis increases,
it can fit the underlying function better and avoiding under fitting. However, one may argue that an over-
sized network may result in over fitting. This problem is now solved by using the split-sample validation
approach to Jocate the best generalization point, and similarity of the data sets is ensured by using the SOM
data-splitting approach.

Figures 3 and 4 are cross-plots of the predicted outputs generated by the MLNN in Experiment 1 as
compared to core data. Fig. 3 is compared to core data set £ while Fig. 4 is compared to core data set 7.
Figures 5 and 6 show similar cross-plots from the outputs generated from the MLINN in Experiment 5.

22.7.2 Case Studies for Distribution Modifier of MLNN

The problem of detennining petrophysical properties from well-log data is again used to illustrate the
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distribution meodifier using MLNN. In this case, it has 40 core permeability data. The input logs used are
neutron. (NPHI), sonic travel time (DT), bulk density (RHOB), and gamma ray (GR). Figure 7 shows the
plot of the core permeability. After the SOM splitting, the available core data are divided into 23 training
data and 16 validation data. A MI.NN was trained and the distance measures were calculated. It was found
that the point near 11 at the y-axis has the largest distance measure of 0.03015. The effect of validation can
be viewed in Fig. 8 that shows the training error, TE, and the validation error, PE. Figure 9 shows the dis-
tance measure for the point at 11. From Fig. 7, validation errors started to increase at around 350 epochs,
even though the training errors continue to fall. It can alse be observed in Fig, 9 that the distance measure
for point 11 is also decreasing. This suggests that beyond this point the MLNN is trying to fit the minority
data points. In the normal split-sample technique, with the purpose of rejecting noise and allowing balanc-
ing between bias and vanance, the MLNN will stop at 350 epochs. This should be the point with best gen-
eralization capability. After this initial distance measure stage, the human analyst must decide whether this
point at 11 should be allowed to be included in the final permeability determination medel.

Two experiments are carried out to examine the proposed distributien modifier. They are summarized in
Table 5 with their corresponding results, The experiments are stopped at the second experiment because the
distance measure, DM, presents reasonable accuracy.
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Table 5. Experiments summary and results

Experiment Number of duplica- | Number of du- Total Error, Distance
tions in Training set plications in TotE Measure, DM,
Validation set for point 11
Point Identifica- 0 0 0.00276 0.03015
tions
1 1 1 0.00232 0.01573
2 2 2 0.00219 0.01113

From the case illustration presented above, it can be seen that the proposed distribution modifier using
MLNN has already affected the distribution of the available logs and core permeability. With the distribu-
tion modifier technique, one can be sure that most of the important features in the underlying function
should be able to be seen by any neural networks learning algorithin regardless of their original distribution
in the data set. In this way, noise could be rejected and at the same time, the significant small data features
could also be incorporated in the final permeability data analysis model.

22.8 CONCLUSIONS

As statistics is a powerful tool in performing data analysis, it is used in this chapter to establish an analysis
framework for neural networks to determine the factors that contribute to the best generalization ability.
Statistics provides a more understanding and meaningful explanation of the factors thus indicating the di-
rection of searching the solution. The factors that have been identified through the statistical analysis are
size of the weights or number of hidden nodes, amount of noise in the training set, and the distribution of
the “clean” data. From the statistical analysis, solutions are provided to ensure that the best generalization
function of the MLNN can be obtained. To avoid under fitting, a large number of hidden nodes is used to
set up the MLNN. This wili also enable that the vector of the weights can learn any complexity of the prob-
lem. In order to avoid MLNN from over fitting, the early stopping validation is used to perform automatic
smoothing. The SOM data splitting approach is proposed to enable the confidence in splitting the training
and validation sct. In cases where the distribution of the ‘clean’ data is not even, the distribution modifier
technique wili enable the MLNN to accommedate them while rejecting noise at the same time. After the
statistical analysis of the generalization problem and the techniques are proposed, the confidence level in
the generalization ability of the MLNN could be increased. This will enhance the use of neural networks for
any data analysis problems.
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